Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29.258
Filtrar
1.
Braz J Biol ; 84: e276323, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38597517

RESUMEN

Nitrogen compounds, particularly ammonium, nitrite and nitrate, are a major problem in shrimp production systems. These compounds can accumulate in the aquatic environment and reach harmful or even lethal levels. Thus, monitoring the levels of nitrogenous compounds such as ammonia and studying their effects on the animals are essential. One tool used for this purpose is acute toxicity testing based on the evaluation of LC50 values. Furthermore, tools that can help improve the performance of aquatic organisms in culture are needed. The present study aimed to evaluate the effect of salinity on the toxicity of total ammonia to postlarvae of the freshwater prawn Macrobrachium rosenbergii. For this purpose, acute toxicity testing (LC50-96h) was performed using 540 postlarvae with a mean weight of 0.13 g and a mean total length of 2.47 cm, divided into 54 experimental units of two liters each. A completely randomized design in a 3×6 factorial scheme was used, combining three salinities (0, 5, and 10 g.L-1) and six total ammonia concentrations (0, 8, 16, 32, 64, and 128 mg.L-1), with three replicates per combination. The LC50 values for M. rosenbergii postlarvae at 24, 48, 72, and 96 h and their respective confidence intervals (95%) were estimated using the trimmed Spearman-Karber method. The results showed that salinities of 5 or 10 g.L-1 did not reduce the acute toxicity of total ammonia.


Asunto(s)
Amoníaco , Palaemonidae , Animales , Amoníaco/toxicidad , Salinidad , Nitritos , Nitratos
2.
Appl Microbiol Biotechnol ; 108(1): 289, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38587649

RESUMEN

Rumen microbial urease inhibitors have been proposed for regulating nitrogen emission and improving nitrogen utilization efficiency in ruminant livestock industry. However, studies on plant-derived natural inhibitors of rumen microbial urease are limited. Urease accessory protein UreG, plays a crucial role in facilitating urease maturation, is a new target for design of urease inhibitor. The objective of this study was to select the potential effective inhibitor of rumen microbial urease from major protoberberine alkaloids in Rhizoma Coptidis by targeting UreG. Our results showed that berberine chloride and epiberberine exerted superior inhibition potential than other alkaloids based on GTPase activity study of UreG. Berberine chloride inhibition of UreG was mixed type, while inhibition kinetics type of epiberberine was uncompetitive. Furthermore, epiberberine was found to be more effective than berberine chloride in inhibiting the combination of nickel towards UreG and inducing changes in the second structure of UreG. Molecular modeling provided the rational structural basis for the higher inhibition potential of epiberberine, amino acid residues in G1 motif and G3 motif of UreG formed interactions with D ring of berberine chloride, while interacted with A ring and D ring of epiberberine. We further demonstrated the efficacy of epiberberine in the ruminal microbial fermentation with low ammonia release and urea degradation. In conclusion, our study clearly indicates that epiberberine is a promising candidate as a safe and effective inhibitor of rumen microbial urease and provides an optimal strategy and suitable feed additive for regulating nitrogen excretion in ruminants in the future. KEY POINTS: • Epiberberine is the most effective inhibitor of rumen urease from Rhizoma Coptidis. • Urease accessory protein UreG is an effective target for design of urease inhibitor. • Epiberberine may be used as natural feed additive to reducing NH3 release in ruminants.


Asunto(s)
Berberina , Berberina/análogos & derivados , Animales , Berberina/farmacología , Ureasa , Amoníaco , Cloruros , Rumen , Inhibidores Enzimáticos/farmacología , Nitrógeno , Rumiantes
3.
Biosens Bioelectron ; 255: 116254, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38569252

RESUMEN

Nitrogen fixation is a key process that sustains life on Earth. Nitrogenase is the sole enzyme capable of fixing nitrogen under ambient conditions. Extensive research efforts have been dedicated to elucidating the enzyme mechanism and its artificial activation through high applied voltage, photochemistry, or strong reducing agents. Harnessing light irradiation to minimize the required external bias can lower the process's high energy investment. Herein, we present the development of photo-bioelectrochemical cells (PBECs) utilizing BiVO4/CoP or CdS/NiO photoanodes for nitrogenase activation toward N2 fixation. The constructed PBEC based on BiVO4/CoP photoanode requires minimal external bias (200 mV) and suppresses O2 generation that allows efficient activation of the nitrogenase enzyme, using glucose as an electron donor. In a second developed PBEC configuration, CdS/NiO photoanode was used, enabling bias-free activation of the nitrogenase-based cathode to produce 100 µM of ammonia at a faradaic efficiency (FE) of 12%. The ammonia production was determined by a commonly used fluorescence probe and further validated using 1H-NMR spectroscopy. The presented PBECs lay the foundation for biotic-abiotic systems to directly activate enzymes toward value-added chemicals by light-driven reactions.


Asunto(s)
Técnicas Biosensibles , Nitrogenasa , Nitrogenasa/química , Nitrogenasa/metabolismo , Amoníaco/química , Fijación del Nitrógeno , Nitrógeno/química
4.
Water Sci Technol ; 89(7): 1725-1740, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38619899

RESUMEN

The algal-bacterial shortcut nitrogen removal (ABSNR) process can be used to treat high ammonia strength wastewaters without external aeration. However, prior algal-bacterial SNR studies have been conducted under fixed light/dark periods that were not representative of natural light conditions. In this study, laboratory-scale photo-sequencing batch reactors (PSBRs) were used to treat anaerobic digester sidestream under varying light intensities that mimicked summer and winter conditions in Tampa, FL, USA. A dynamic mathematical model was developed for the ABSNR process, which was calibrated and validated using data sets from the laboratory PSBRs. The model elucidated the dynamics of algal and bacterial biomass growth under natural illumination conditions as well as transformation processes for nitrogen species, oxygen, organic and inorganic carbon. A full-scale PSBR with a 1.2 m depth, a 6-day hydraulic retention time (HRT) and a 10-day solids retention time (SRT) was simulated for treatment of anaerobic digester sidestream. The full-scale PSBR could achieve >90% ammonia removal, significantly reducing the nitrogen load to the mainstream wastewater treatment plant (WWTP). The dynamic simulation showed that ABSNR process can help wastewater treatment facilities meet stringent nitrogen removal standards with low energy inputs.


Asunto(s)
Amoníaco , Nitrógeno , Nitrógeno/análisis , Desnitrificación , Estaciones del Año , Reactores Biológicos/microbiología , Aguas Residuales
5.
Sci Rep ; 14(1): 7647, 2024 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-38561426

RESUMEN

The persistent challenges posed by pollution and climate change are significant factors disrupting ecosystems, particularly aquatic environments. Numerous contaminants found in aquatic systems, such as ammonia and metal toxicity, play a crucial role in adversely affecting aquaculture production. Against this backdrop, fish feed was developed using quinoa husk (the byproduct of quinoa) as a substitute for fish meal. Six isonitrogenous diets (30%) and isocaloric diets were formulated by replacing fish meal with quinoa husk at varying percentages: 0% quinoa (control), 15, 20, 25, 30 and 35%. An experiment was conducted to explore the potential of quinoa husk in replacing fish meal and assess its ability to mitigate ammonia and arsenic toxicity as well as high-temperature stress in Pangasianodon hypophthalmus. The formulated feed was also examined for gene regulation related to antioxidative status, immunity, stress proteins, growth regulation, and stress markers. The gene regulation of sod, cat, and gpx in the liver was notably upregulated under concurrent exposure to ammonia, arsenic, and high-temperature (NH3 + As + T) stress. However, quinoa husk at 25% downregulated sod, cat, and gpx expression compared to the control group. Furthermore, genes associated with stress proteins HSP70 and DNA damage-inducible protein (DDIP) were significantly upregulated in response to stressors (NH3 + As + T), but quinoa husk at 25% considerably downregulated HSP70 and DDIP to mitigate the impact of stressors. Growth-responsive genes such as myostatin (MYST) and somatostatin (SMT) were remarkably downregulated, whereas growth hormone receptor (GHR1 and GHRß), insulin-like growth factors (IGF1X, IGF2X), and growth hormone gene were significantly upregulated with quinoa husk at 25%. The gene expression of apoptosis (Caspase 3a and Caspase 3b) and nitric oxide synthase (iNOS) were also noticeably downregulated with quinoa husk (25%) reared under stressful conditions. Immune-related gene expression, including immunoglobulin (Ig), toll-like receptor (TLR), tumor necrosis factor (TNFα), and interleukin (IL), strengthened fish immunity with quinoa husk feed. The results revealed that replacing 25% of fish meal with quinoa husk could improve the gene regulation of P. hypophthalmus involved in mitigating ammonia, arsenic, and high-temperature stress in fish.


Asunto(s)
Arsénico , Bagres , Chenopodium quinoa , Animales , Suplementos Dietéticos/análisis , Chenopodium quinoa/genética , Arsénico/toxicidad , Amoníaco , Ecosistema , Dieta , Antioxidantes , Caspasas , Alimentación Animal/análisis
6.
Water Environ Res ; 96(4): e11017, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38565318

RESUMEN

This study explored the implementation of mainstream partial denitrification with anammox (PdNA) in the second anoxic zone of a wastewater treatment process in an integrated fixed film activated sludge (IFAS) configuration. A pilot study was conducted to compare the use of methanol and glycerol as external carbon sources for an IFAS PdNA startup, with a goal to optimize nitrogen removal while minimizing carbon usage. The study also investigated the establishment of anammox bacteria on virgin carriers in IFAS reactors without the use of seeding, and it is the first IFAS PdNA startup to use methanol as an external carbon source. The establishment of anammox bacteria was confirmed in both reactors 102 days after startup. Although the glycerol-fed reactor achieved a higher steady-state maximum ammonia removal rate because of anammox bacteria (1.6 ± 0.3 g/m2/day) in comparison with the methanol-fed reactor (1.2 ± 0.2 g/m2/day), both the glycerol- and methanol-fed reactors achieved similar average in situ ammonia removal rates of 0.39 ± 0.2 g/m2/day and 0.40 ± 0.2 g/m2/day, respectively. Additionally, when the upstream ammonia versus NOx (AvN) control system maintained an ideal ratio of 0.40-0.50 g/g, the methanol-fed reactor attained a lower average effluent TIN concentration (3.50 ± 1.2 mg/L) than the glycerol-fed reactor (4.43 ± 1.6 mg/L), which was prone to elevated nitrite concentrations in the effluent. Overall, this research highlights the potential for PdNA in IFAS configurations as an efficient and cost-saving method for wastewater treatment, with methanol as a viable carbon source for the establishment of anammox bacteria. PRACTITIONER POINTS: Methanol is an effective external carbon source for an anammox startup that avoids the need for costly alternative carbon sources. The methanol-fed reactor demonstrated higher TIN removal compared with the glycerol-fed reactor because of less overproduction of nitrite. Anammox bacteria was established in an IFAS reactor without seeding and used internally stored carbon to reduce external carbon addition. Controlling the influent ammonia versus NOx (AvN) ratio between 0.40 and 0.50 g/g allowed for low and stable TIN effluent conditions.


Asunto(s)
Compuestos de Amonio , Aguas del Alcantarillado , Aguas del Alcantarillado/microbiología , Amoníaco , Desnitrificación , Metanol , Glicerol , Nitritos , Proyectos Piloto , Oxidación Anaeróbica del Amoníaco , Reactores Biológicos/microbiología , Bacterias , Nitrógeno , Oxidación-Reducción
7.
PLoS One ; 19(4): e0297844, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38578758

RESUMEN

The present study aims to investigate the influence of zeolite usage and stocking densities on various parameters, including ammonia removal from water, accumulation of heavy metals in fish organs, water quality, growth performance, feed efficiency, muscle composition, as well as hematological and biochemical parameters in European seabass (Dicentrarchus labrax) over a 90-day duration. A total of 2400 D. labrax with an initial weight of 9.83 ± 2.02 g and initial length of 9.37 ± 0.32 cm were distributed among 24 tanks. The research involved six distinct treatment groups, with two different zeolite levels (0 and 15 ppt) and three stocking density levels (50, 100, and 150 fish/m3), each replicated four times. The results of the research demonstrate a statistically significant improvement (p < 0.05) in water quality measures with the introduction of zeolite. The successful implementation of this amendment mitigated the adverse effects of fish density on water quality parameters. Higher stocking density negatively impacted European sea bass growth, feed utilization, and hemato-biochemical indicators. Zeolite use effectively alleviated these adverse effects, particularly on performance, feed utilization, hematological, and biochemical parameters. The study's results indicate that the utilization of zeolite has shown to be efficacious in mitigating the accumulation of heavy metals in both water and fish organs, while concurrently augmenting fish attributes. However, the increase in density led to a significant decrease in the accumulation of heavy metals in both water and fish organs. The present study highlights the capacity of natural zeolites to mitigate the negative consequences associated with water quality concerns. The efficiency of these zeolites in limiting the accessibility of heavy metals in polluted water is shown, hence minimizing their accumulation in fish organs. In addition, the improvement of fish performance has the capacity to have a beneficial influence on both the well-being and efficiency of fish in aquaculture. Additional research is essential to fully understand the complex molecular pathways involved in utilizing natural zeolite under different fish densities.


Asunto(s)
Lubina , Metales Pesados , Zeolitas , Animales , Lubina/fisiología , Amoníaco/metabolismo , Metales Pesados/metabolismo , Músculos/metabolismo
8.
Molecules ; 29(7)2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38611705

RESUMEN

Extensive industrial activities and anthropogenic agricultural practices have led to substantial ammonia release to the environment. Although croplands can act as ammonia sinks, reduced crop production under high concentrations of ammonium has been documented. Alpha-ketoglutarate (AKG) is a critical carbon source, displaying pleiotropic physiological functions. The objective of the present study is to disclose the potential of AKG to enhance ammonium assimilation in poplars. It showed that AKG application substantially boosted the height, biomass, and photosynthesis activity of poplars exposed to excessive ammonium. AKG also enhanced the activities of key enzymes involved in nitrogen assimilation: glutamine synthetase (GS) and glutamate synthase (GOGAT), elevating the content of amino acids, sucrose, and the tricarboxylic acid cycle (TCA) metabolites. Furthermore, AKG positively modulated key genes tied to glucose metabolism and ATP synthesis, while suppressing ATP-depleting genes. Correspondingly, both H+-ATPase activity and ATP content increased. These findings demonstrate that exogenously applying AKG improves poplar growth under a high level of ammonium treatment. AKG might function through sufficient carbon investment, which enhances the carbon-nitrogen balance and energy stability in poplars, promoting ammonium assimilation at high doses of ammonium. Our study provides novel insight into AKG's role in improving poplar growth in response to excess ammonia exposure.


Asunto(s)
Compuestos de Amonio , Compuestos de Amonio/farmacología , Amoníaco , Ácidos Cetoglutáricos/farmacología , Carbono , Nitrógeno , Adenosina Trifosfato
9.
Environ Sci Technol ; 58(16): 6964-6977, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38602491

RESUMEN

The rapid reduction in the cost of renewable energy has motivated the transition from carbon-intensive chemical manufacturing to renewable, electrified, and decarbonized technologies. Although electrified chemical manufacturing technologies differ greatly, the feasibility of each electrified approach is largely related to the energy efficiency and capital cost of the system. Here, we examine the feasibility of ammonia production systems driven by wind and photovoltaic energy. We identify the optimal regions where wind and photovoltaic electricity production may be able to meet the local demand for ammonia-based fertilizers and set technology targets for electrified ammonia production. To compete with the methane-fed Haber-Bosch process, electrified ammonia production must reach energy efficiencies of above 20% for high natural gas prices and 70% for low natural gas prices. To account for growing concerns regarding access to water, geospatial optimization considers water stress caused by new ammonia facilities, and recommendations ensure that the identified regions do not experience an increase in water stress. Reducing water stress by 99% increases costs by only 1.4%. Furthermore, a movement toward a more decentralized ammonia supply chain driven by wind and photovoltaic electricity can reduce the transportation distance for ammonia by up to 76% while increasing production costs by 18%.


Asunto(s)
Amoníaco , Energía Renovable , Fertilizantes , Electricidad , Viento
10.
PLoS One ; 19(4): e0299518, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38603769

RESUMEN

Wastewater irrigation is a common practice for agricultural systems in arid and semiarid zones, which can help to overcome water scarcity and contribute with nutrient inputs. Ammonia-oxidizing bacteria (AOB) and archaea (AOA) are key in the transformation of NH4+-N in soil and can be affected by variations in soil pH, EC, N and C content, or accumulation of pollutants, derived from wastewater irrigation. The objective of this study was to determine the changes in the ammonia oxidizing communities in agricultural soils irrigated with wastewater for different periods of time (25, 50, and 100 years), and in rainfed soils (never irrigated). The amoA gene encoding for the catalytic subunit of the ammonia monooxygenase was used as molecular reporter; it was quantified by qPCR and sequenced by high throughput sequencing, and changes in the community composition were associated with the soil physicochemical characteristics. Soils irrigated with wastewater showed up to five times more the abundance of ammonia oxidizers (based on 16S rRNA gene relative abundance and amoA gene copies) than those under rainfed agriculture. While the amoA-AOA: amoA-AOB ratio decreased from 9.8 in rainfed soils to 1.6 in soils irrigated for 100 years, indicating a favoring environment for AOB rather than AOA. Further, the community structure of both AOA and AOB changed during wastewater irrigation compared to rainfed soils, mainly due to the abundance variation of certain phylotypes. Finally, the significant correlation between soil pH and the ammonia oxidizing community structure was confirmed, mainly for AOB; being the main environmental driver of the ammonia oxidizer community. Also, a calculated toxicity index based on metals concentrations showed a correlation with AOB communities, while the content of carbon and nitrogen was more associated with AOA communities. The results indicate that wastewater irrigation influence ammonia oxidizers communities, manly by the changes in the physicochemical environment.


Asunto(s)
Amoníaco , Suelo , Suelo/química , Amoníaco/química , Aguas Residuales , ARN Ribosómico 16S , Archaea/genética , Oxidación-Reducción , Microbiología del Suelo , Filogenia , Nitrificación
11.
J Zhejiang Univ Sci B ; 25(4): 354-358, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38584096

RESUMEN

Glufosinate-ammonium herbicides are the most widely used broad-spectrum, non-selective herbicides in the world. Glufosinate-ammonium is a structural analogue of glutamate (Glu) which can irreversibly inhibit the activity of glutamine synthetase (GS) and Glu decarboxylase in plants, thereby blocking the synthesis of glutamine (Gln) from Glu and ammonia (Hoerlein, 1994). This causes the plants to die because of the nitrogen metabolism disorder and subsequent intracellular accumulation of ammonia. In humans, the characteristic features of glufosinate-ammonium herbicide poisoning include gastrointestinal symptoms and neurotoxicity (Watanabe and Sano, 1998). Currently, there are no antidotes for glufosinate-ammonium herbicide poisoning, and thus supportive care is the key treatment.


Asunto(s)
Amoníaco , Herbicidas , Humanos , Aminobutiratos/metabolismo , Convulsiones
12.
Trop Anim Health Prod ; 56(4): 130, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38635010

RESUMEN

This study evaluated the possibilities of pumice (light stones) as litter material in broiler production. Experimental treatments included wood shavings (WS), acidic pumice (AP), and basic pumice (BP) alone, and in combination; wood shaving + acidic pumice (WSAP) and wood shaving + basic pumice (WSBP) in a ratio of 1:1. Two trials were performed, one in summer, and the other in winter. Each trial involved 750 mixed-sex Ross (308) broilers. Also, there were 15 replicate pens with 50 broilers and a stocking density of 12.5 birds/m2 for each pen at the beginning of each trial. Performance, litter quality, carcass parameters, body and leg abnormalities, body temperature, fear and stress responses, proportional asymmetry, and some behavior expressions were investigated. The litter treatment influenced the final live body weight, litter moisture, ammonia concentration, footpad dermatitis, hock burn, breast blister, hot carcass yield, heart, liver, spleen, abdominal fat, wing and neck ratio, breast and back cleanliness, and the expression of dust bathing and foraging behaviors (P < 0.01; P < 0.05). Furthermore, there was a seasonal effect on live body weight, feed conversion ratio, livability, litter pH, 42-day litter moisture, hot carcass yield, back cleanliness, footpad dermatitis, hock burn, footpad temperature, heterophil-to-lymphocyte ratio, and expression of pecking behavior (P < 0.01; P < 0.05). It is suggested that acidic pumice stone alone or in a mixture with wood shavings could be used as a reliable litter material, alternative to wood shavings.


Asunto(s)
Pollos , Dermatitis , Silicatos , Animales , Peso Corporal , Amoníaco , Dermatitis/veterinaria
13.
Curr Microbiol ; 81(6): 138, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38609554

RESUMEN

A Gram-stain-negative bacterium with a rod-to-ovoid shape, named strain M216T, was isolated from sand sediment from the coastal intertidal zone of Huludao, Liaoning Province, China. Growth was observed at 8-40 °C (optimal, 30 °C), pH 5.5-9.5 (optimal, pH 6.5) and 0.5-14.0% (w/v) NaCl (optimal, 6%). Strain M216T possessed ubiquinone-9 as its sole respiratory quinone and phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylglycerol, one unidentified aminophosphoglycolipid, one unidentified aminophospholipid, two unidentified phosphoglycolipids, three unidentified phospholipids and three unidentified glycolipids as the main polar lipids. C12:0, C16:0, C12:0 3-OH, C16:1 ω9c, C18:1 ω9c and summed features 3 (C16:1 ω7c and/or C16:1 ω6c) were the major fatty acids (> 5%). The 16S rRNA gene sequence of strain M216T exhibited high similarity to those of 'Marinobacter arenosus' CAU 1620T and Marinobacter adhaerens HP15T (99.3% and 98.5%, respectively) and less than 98.5% similarity to those of the other type strains. The ANI and dDDH values between the strain M216T and 'Marinobacter arenosus' CAU 1620T were 87.4% and 33.3%, respectively; these values were the highest among the other type strains but lower than the species threshold. The G+C content of strain M216T was 58.3%. Genomic analysis revealed that strain M216T harbors the major CAZymes of GH13, GH23, GH73, and PL5, which are responsible for polysaccharide degradation and the potential ability to reduce nitrate to ammonia. Through phenotypic, genotypic, and chemotaxonomic analyses, we proposed the name Marinobacter albus sp. nov., a novel species in the genus Marinobacter, with its type strain M216T (= MCCC 1K08600T = KCTC 82894T).


Asunto(s)
Marinobacter , Marinobacter/genética , ARN Ribosómico 16S/genética , Arena , Amoníaco , China
14.
Proc Natl Acad Sci U S A ; 121(16): e2401313121, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38602916

RESUMEN

All forms of life are presumed to synthesize arginine from citrulline via a two-step pathway consisting of argininosuccinate synthetase and argininosuccinate lyase using citrulline, adenosine 5'-triphosphate (ATP), and aspartate as substrates. Conversion of arginine to citrulline predominantly proceeds via hydrolysis. Here, from the hyperthermophilic archaeon Thermococcus kodakarensis, we identified an enzyme which we designate "arginine synthetase". In arginine synthesis, the enzyme converts citrulline, ATP, and free ammonia to arginine, adenosine 5'-diphosphate (ADP), and phosphate. In the reverse direction, arginine synthetase conserves the energy of arginine deimination and generates ATP from ADP and phosphate while releasing ammonia. The equilibrium constant of this reaction at pH 7.0 is [Cit][ATP][NH3]/[Arg][ADP][Pi] = 10.1 ± 0.7 at 80 °C, corresponding to a ΔG°' of -6.8 ± 0.2 kJ mol-1. Growth of the gene disruption strain was compared to the host strain in medium composed of amino acids. The results suggested that arginine synthetase is necessary in providing ornithine, the precursor for proline biosynthesis, as well as in generating ATP. Growth in medium supplemented with citrulline indicated that arginine synthetase can function in the direction of arginine synthesis. The enzyme is widespread in nature, including bacteria and eukaryotes, and catalyzes a long-overlooked energy-conserving reaction in microbial amino acid metabolism. Along with ornithine transcarbamoylase and carbamate kinase, the pathway identified here is designated the arginine synthetase pathway.


Asunto(s)
Arginina , Ligasas , Arginina/metabolismo , Citrulina/metabolismo , Amoníaco , Ornitina/genética , Adenosina Trifosfato/metabolismo , Fosfatos , Adenosina , Catálisis
15.
Nat Commun ; 15(1): 3143, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38609359

RESUMEN

Largely removed from anthropogenic delivery of nitrogen (N), Antarctica has notably low levels of nitrogen. Though our understanding of biological sources of ammonia have been elucidated, the microbial drivers of nitrate (NO3-) cycling in coastal Antarctica remains poorly understood. Here, we explore microbial N cycling in coastal Antarctica, unraveling the biological origin of NO3- via oxygen isotopes in soil and lake sediment, and through the reconstruction of 1968 metagenome-assembled genomes from 29 microbial phyla. Our analysis reveals the metabolic potential for microbial N2 fixation, nitrification, and denitrification, but not for anaerobic ammonium oxidation, signifying a unique microbial N-cycling dynamic. We identify the predominance of complete ammonia oxidizing (comammox) Nitrospira, capable of performing the entire nitrification process. Their adaptive strategies to the Antarctic environment likely include synthesis of trehalose for cold stress, high substrate affinity for resource utilization, and alternate metabolic pathways for nutrient-scarce conditions. We confirm the significant role of comammox Nitrospira in the autotrophic, nitrification process via 13C-DNA-based stable isotope probing. This research highlights the crucial contribution of nitrification to the N budget in coastal Antarctica, identifying comammox Nitrospira clade B as a nitrification driver.


Asunto(s)
Amoníaco , Nitrificación , Regiones Antárticas , Respuesta al Choque por Frío , Nitrógeno
16.
J Environ Sci (China) ; 143: 12-22, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38644010

RESUMEN

Selective catalytic NH3-to-N2 oxidation (NH3-SCO) is highly promising for abating NH3 emissions slipped from stationary flue gas after-treatment devices. Its practical application, however, is limited by the non-availability of low-cost catalysts with high activity and N2 selectivity. Here, using defect-rich nitrogen-doped carbon nanotubes (NCNT-AW) as the support, we developed a highly active and durable copper-based NH3-SCO catalyst with a high abundance of cuprous (Cu+) sites. The obtained Cu/NCNT-AW catalyst demonstrated outstanding activity with a T50 (i.e. the temperature to reach 50% NH3 conversion) of 174°C in the NH3-SCO reaction, which outperformed not only the Cu catalyst supported on N-free O-functionalized CNTs (OCNTs) or NCNT with less surface defects, but also those most active Cu catalysts in open literature. Reaction kinetics measurements and temperature-programmed surface reactions using NH3 as a probe molecule revealed that the NH3-SCO reaction on Cu/NCNT-AW follows an internal selective catalytic reaction (i-SCR) route involving nitric oxide (NO) as a key intermediate. According to mechanistic investigations by X-ray photoelectron spectroscopy, Raman spectroscopy, and X-ray absorption spectroscopy, the superior NH3-SCO performance of Cu/NCNT-AW originated from a synergy of surface defects and N-dopants. Specifically, surface defects promoted the anchoring of CuO nanoparticles on N-containing sites and, thereby, enabled efficient electron transfer from N to CuO, increasing significantly the fraction of SCR-active Cu+ sites in the catalyst. This study puts forward a new idea for manipulating and utilizing the interplay of defects and N-dopants on carbon surfaces to fabricate Cu+-rich Cu catalysts for efficient abatement of slip NH3 emissions via selective oxidation.


Asunto(s)
Amoníaco , Cobre , Oxidación-Reducción , Cobre/química , Amoníaco/química , Catálisis , Nanotubos de Carbono/química , Contaminantes Atmosféricos/química , Temperatura , Modelos Químicos
17.
Sci Total Environ ; 927: 172110, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38565348

RESUMEN

Recently, it is reported that bacterial communication coordinates the whole consortia to jointly resist the adverse environments. Here, we found the bacterial communication inevitably distinguished bacterial adaptation among different species in partial nitrification reactor under decreasing temperatures. We operated a partial nitrification reactor under temperature gradient from 30 °C to 5 °C and found the promotion of bacterial communication on adaptation of ammonia-oxidizing bacteria (AOB) was greater than that of nitrite-oxidizing bacteria (NOB). Signal pathways with single-component sensing protein in AOB can regulate more genes involved in bacterial adaptation than that with two-component sensing protein in NOB. The negative effects of bacterial communication, which were seriously ignored, have been highlighted, and Clp regulator downstream diffusible signal factor (DSF) based signal pathways worked as transcription activators and inhibitors of adaptation genes in AOB and NOB respectively. Bacterial communication can induce differential adaptation through influencing bacterial interactions. AOB inclined to cooperate with DSF synthesis bacteria as temperature declined, however, cooperation between NOB and DSF synthesis bacteria inclined to get weakening. According to the regulatory effects of signal pathways, bacterial survival strategies for self-protection were revealed. This study hints a potential way to govern niche differentiation in the microbiota by bacterial communication, contributing to forming an efficient artificial ecosystem.


Asunto(s)
Reactores Biológicos , Nitrificación , Reactores Biológicos/microbiología , Bacterias/metabolismo , Adaptación Fisiológica , Amoníaco/metabolismo , Fenómenos Fisiológicos Bacterianos
18.
Mol Biol Rep ; 51(1): 496, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38587695

RESUMEN

BACKGROUND: The iono- and osmoregulatory capacities of marine teleosts, such as European sea bass (Dicentrarchus labrax) are expected to be challenged by high carbon dioxide exposure, and the adverse effects of elevated CO2 could be amplified when such fish migrate into less buffered hypo-osmotic estuarine environments. Therefore, the effects of increased CO2 on the physiological responses of European sea bass (Dicentrarchus labrax) acclimated to 32 ppt, 10 ppt and 2.5 ppt were investigated. METHODS: Following acclimation to different salinities for two weeks, fish were exposed to present-day (400 µatm) and future (1000 µatm) atmospheric CO2 for 1, 3, 7 and 21 days. Blood pH, plasma ions (Na+, K+, Cl-), branchial mRNA expression of ion transporters such as Na+/K+-ATPase (NKA), Na+/K+/2Cl- co-transporters (NKCC) and ammonia transporters (e.g. Rhesus glycoproteins Rhbg, Rhcg1 and Rhcg2) were examined to understand the iono- and osmoregulatory consequences of elevated CO2. RESULTS: A transient but significant increase in the blood pH of exposed fish acclimated at 10 ppt (day 1) and 2.5 ppt (day 21) was observed possibly due to an overshoot of the blood HCO3- accumulation while a significant reduction of blood pH was observed after 21 days at 2.5ppt. However, no change was seen at 32 ppt. Generally, Na + concentration of control fish was relatively higher at 10 ppt and lower at 2.5 ppt compared to 32 ppt control group at all sampling periods. Additionally, NKA was upregulated in gill of juvenile sea bass when acclimated to lower salinities compared to 32 ppt control group. CO2 exposure generally downregulated NKA mRNA expression at 32ppt (day 1), 10 ppt (days 3, 7 and 21) and 2.5ppt (days 1 and 7) and also a significant reduction of NKCC mRNA level of the exposed fish acclimated at 32 ppt (1-3 days) and 10 ppt (7-21 days) was observed. Furthermore, Rhesus glycoproteins were generally upregulated in the fish acclimated at lower salinities indicating a higher dependance on gill ammonia excretion. Increased CO2 led to a reduced expression of Rhbg and may therefore reduce ammonia excretion rate. CONCLUSION: Juvenile sea bass were relatively successful in keeping acid base balance under an ocean acidification scenario. However, this came at a cost for ionoregulation with reduced NKA, NKCC and Rhbg expression rates as a consequence.


Asunto(s)
Lubina , Animales , Lubina/genética , Dióxido de Carbono , Amoníaco , Concentración de Iones de Hidrógeno , Agua de Mar , Macaca mulatta , Glicoproteínas , ARN Mensajero
19.
PLoS One ; 19(4): e0301296, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38574046

RESUMEN

In this study, the complex interactions between soil types, compaction, and moisture on nitrogen (N) transformation processes such as ammonia (NH3) volatilization, ammonification, nitrification, and denitrification were examined over a 30-day period using a simulated column approach. Two soil types: loam, and sandy loam, were subjected to three compaction treatments-control, surface, and sub-surface compaction-and two moisture regimes, dry and wet. Liquid urea ammonium nitrate (32-0-0) was used as the N fertilizer source at a rate of 200 kg N ha-1. Key indicators of N transformations were measured, including residual concentrations of ammonium (NH4-N) and nitrate (NO3-N), NO3-N leaching, NH3 volatilization, and nitrous oxide (N2O) emissions. Findings revealed that compaction significantly increased residual NH4-N concentrations in deeper soil profiles, with the highest 190.80 mg kg-1 recorded in loam soil under sub-surface compaction and dry conditions. Nitrification rates decreased across both soil types due to compaction, evidenced by elevated residual NH4-N levels. Increased NO3-N leaching was observed in loam soil (178.06 mg L-1), greater than sandy loam (81.11 mg L-1), due to initial higher residual NO3- in loam soil. The interaction of compaction and moisture most affected N2O emissions, with the highest emissions in control treatments during dry weather at 2.88 kg ha -1. Additionally, higher NH3 volatilization was noted in moist sandy loam soil under control conditions at 19.64 kg ha -1. These results highlight the necessity of considering soil texture, moisture, and compaction in implementing sustainable N management strategies in agriculture and suggest recommendations such as avoiding broadcast application in moist sandy loam and loam soil to mitigate NH3 volatilization and enhance N use efficiency, as well as advocating for readjustment of fertilizer rate based on organic matter content to reduce potential NO3-N leaching and N2O emissions, particularly in loam soil.


Asunto(s)
Nitrógeno , Suelo , Fertilizantes/análisis , Agricultura , Amoníaco/análisis , Arena , Óxido Nitroso/análisis
20.
Sci Rep ; 14(1): 6371, 2024 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-38493232

RESUMEN

Marine sponges host diverse microbial communities. Although we know many of its ecological patterns, a deeper understanding of the polar sponge holobiont is still needed. We combine high-throughput sequencing of ribosomal genes, including the largest taxonomic repertoire of Antarctic sponge species analyzed to date, functional metagenomics, and metagenome-assembled genomes (MAGs). Our findings show that sponges harbor more exclusive bacterial and archaeal communities than seawater, while microbial eukaryotes are mostly shared. Furthermore, bacteria in Antarctic sponge holobionts establish more cooperative interactions than in sponge holobionts from other environments. The bacterial classes that established more positive relations were Bacteroidia, Gamma- and Alphaproteobacteria. Antarctic sponge microbiomes contain microbial guilds that encompass ammonia-oxidizing archaea, ammonia-oxidizing bacteria, nitrite-oxidizing bacteria, and sulfur-oxidizing bacteria. The retrieved MAGs showed a high level of novelty and streamlining signals and belong to the most abundant members of the main microbial guilds in the Antarctic sponge holobiont. Moreover, the genomes of these symbiotic bacteria contain highly abundant functions related to their adaptation to the cold environment, vitamin production, and symbiotic lifestyle, helping the holobiont survive in this extreme environment.


Asunto(s)
Microbiota , Poríferos , Animales , Poríferos/microbiología , Regiones Antárticas , Amoníaco , Archaea/genética , Bacterias/genética , Microbiota/genética , Filogenia , ARN Ribosómico 16S/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...